Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Modern Approaches to the Invariant-Subspace Problem

Modern Approaches to the Invariant-Subspace Problem

Modern Approaches to the Invariant-Subspace Problem

Isabelle Chalendar, Université Lyon I
Jonathan R. Partington, University of Leeds
December 2011
This ISBN is for an eBook version which is distributed on our behalf by a third party.
Adobe eBook Reader
9781139120128
$142.00
USD
Adobe eBook Reader
GBP
Hardback

    One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics.

    • Gives the most recent results in the area of invariant subspaces
    • Relatively self-contained and accessible to beginning researchers
    • Summarises standard background results in analysis

    Reviews & endorsements

    'I think this is a very useful book which will serve as a good source for a rich variety of methods that have been developed for proving positive results on the ISP. Moreover, there is much material in the book which is of interest beyond its application to the ISP. [It] should be of interest to analysts in general as well as being an essential source for study of the ISP.' Sandy Davie, SIAM Review

    See more reviews

    Product details

    December 2011
    Adobe eBook Reader
    9781139120128
    0 pages
    0kg
    4 b/w illus. 65 exercises
    This ISBN is for an eBook version which is distributed on our behalf by a third party.

    Table of Contents

    • Introduction
    • 1. Background
    • 2. The operator-valued Poisson kernel and its applications
    • 3. Properties (An,m) and factorization of integrable functions
    • 4. Polynomially bounded operators with rich spectrum
    • 5. Beurling algebras
    • 6. Applications of a fixed-point theorem
    • 7. Minimal vectors
    • 8. Universal operators
    • 9. Moment sequences and binomial sums
    • 10. Positive and strictly-singular operators
    • Bibliography
    • Index.
    Resources for
    Type
      Authors
    • Isabelle Chalendar , Université Lyon I

      Isabelle Chalendar is an Assistant Professor in the Department of Mathematics at the University of Lyon 1, France.

    • Jonathan R. Partington , University of Leeds

      Jonathan R. Partington is a Professor in the School of Mathematics at the University of Leeds.