Phase Noise and Frequency Stability in Oscillators
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for academic researchers, industry practitioners, and graduate students in RF engineering and communications engineering.
- Presents practical examples, including case studies taken from laboratory prototypes and commercial oscillators
- Offers a rigorous yet accessible treatment of the subject
- Includes end of chapter exercises
Product details
No date availablePaperback
9780521153287
228 pages
244 × 170 × 12 mm
0.37kg
Table of Contents
- Foreword Lute Maleki
- Foreword David B. Leeson
- Preface
- List of symbols
- 1. Phase noise and frequency stability
- 2. Phase noise in semiconductors and amplifiers
- 3. Heuristic approach to the Leeson effect
- 4. Phase noise and linear feedback theory
- 5. Noise in delay-line oscillators and lasers
- 6. Oscillator hacking
- A Laplace transform
- Bibliography.