Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Equivariant Topology and Derived Algebra

Equivariant Topology and Derived Algebra

Equivariant Topology and Derived Algebra

Scott Balchin, Max-Planck-Institut für Mathematik, Bonn
David Barnes, Queen's University Belfast
Magdalena Kędziorek, Radboud Universiteit Nijmegen
Markus Szymik, Norwegian University of Science and Technology, Trondheim
November 2021
Paperback
9781108931946
AUD$110.86
exc GST
Paperback
USD
eBook

    This volume contains eight research papers inspired by the 2019 'Equivariant Topology and Derived Algebra' conference, held at the Norwegian University of Science and Technology, Trondheim in honour of Professor J. P. C. Greenlees' 60th birthday. These papers, written by experts in the field, are intended to introduce complex topics from equivariant topology and derived algebra while also presenting novel research. As such this book is suitable for new researchers in the area and provides an excellent reference for established researchers. The inter-connected topics of the volume include: algebraic models for rational equivariant spectra; dualities and fracture theorems in chromatic homotopy theory; duality and stratification in tensor triangulated geometry; Mackey functors, Tambara functors and connections to axiomatic representation theory; homotopy limits and monoidal Bousfield localization of model categories.

    • Includes eight peer-reviewed papers written by experts in the field
    • Covers a wide variety of topics and gives an idea of the breadth of sub-areas in the subject
    • An essential reference for researchers in equivariant topology and derived algebra

    Product details

    November 2021
    Adobe eBook Reader
    9781108950671
    0 pages
    This ISBN is for an eBook version which is distributed on our behalf by a third party.

    Table of Contents

    • 1. Comparing dualities in the K(n)-local category Paul G. Goerss and Michael J. Hopkins
    • 2. Axiomatic representation theory of finite groups by way of groupoids Ivo Dell'Ambrogio
    • 3. Chromatic fracture cubes Omar Antolín-Camarena and Tobias Barthel
    • 4. An introduction to algebraic models for rational G-spectra David Barnes and Magdalena KÄ™dziorek
    • 5. Monoidal Bousfield localizations and algebras over operads David White
    • 6. Stratification and duality for unipotent finite supergroup schemes Dave Benson, Srikanth B. Iyengar, Henning Krause and Julia Pevtsova
    • 7. Bi-incomplete Tambara functors Andrew J. Blumberg and Michael A. Hill
    • 8. Homotopy limits of model categories, revisited Julia E. Bergner.
      Contributors
    • Paul G. Goerss, Michael J. Hopkins, Ivo Dell'Ambrogio, Omar Antolín-Camarena, Tobias Barthel, David Barnes, Magdalena KÄ™dziorek, David White, Dave Benson, Srikanth B. Iyengar, Henning Krause, Julia Pevtsova, Andrew J. Blumberg, Michael A. Hill, Julia E. Bergner

    • Editors
    • Scott Balchin , Max-Planck-Institut für Mathematik, Bonn

      Scott Balchin is currently Postdoctoral Fellow at the Max Planck Institute of Mathematics in Bonn. Previously he was Postdoctoral Research Fellow at the University of Warwick. He has published several articles on the use of Quillen model categories in homotopy theory and is the author of A Handbook of Model Categories (2021).

    • David Barnes , Queen's University Belfast

      David Barnes is Senior Lecturer in Mathematics at Queen's University Belfast. His research focuses on stable homotopy theory, usually with either a monoidal or equivariant flavour, often using algebra to describe the structures in question. He is a co-author of Foundations of Stable Homotopy Theory (2020).

    • Magdalena KÄ™dziorek , Radboud Universiteit Nijmegen

      Magdalena Kędziorek is Assistant Professor in Mathematics at Radboud University in Nijmegen. She has held research positions in the Netherlands, Germany, the United Kingdom and Switzerland, where she has worked on topics including rational stable homotopy theory, equivariant operads and motivic homotopy theory.

    • Markus Szymik , Norwegian University of Science and Technology, Trondheim

      Markus Szymik is Professor of Mathematics at NTNU Norwegian University of Science and Technology in Trondheim. His research interests center around algebraic and geometric aspects of symmetry. He has written an introductory textbook on topology (2009 and 2015) and co-edited a conference proceedings on topological data analysis (2020).