Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Fluid Dynamics

Fluid Dynamics

Fluid Dynamics

Peter S. Bernard, University of Maryland, College Park
No date available
Hardback
9781107071575

Experience the eBook and the associated online resources on our new Higher Education website. Go to site For other formats please stay on this page.

Hardback

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math and physics taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The exposition follows an arc through the subject building towards a detailed derivation of the Navier–Stokes and energy equations followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations thus allowing a clearer view of the physics. The motivation behind many fundamental concepts such as Bernoulli's equation and the stream function are included. Many exercises are designed with a view toward using MATLAB® or equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

    • A focused, clear discussion of the basic physics of fluid dynamics
    • Motivations behind the physical and mathematical developments are stressed
    • The development encourages the use of computation and symbolic analysis in studying fluid flow behavior

    Product details

    No date available
    Hardback
    9781107071575
    264 pages
    260 × 182 × 18 mm
    0.66kg
    110 b/w illus. 1 table 142 exercises

    Table of Contents

    • 1. Introduction
    • 2. Eulerian and Lagrangian viewpoints, paths and streamlines
    • 3. Stream function
    • 4. Helmholtz decomposition
    • 5. Sources, sinks and vortices
    • 6. Doublets and their applications
    • 7. Complex potential
    • 8. Accelerating reference frames
    • 9. Fluids at rest
    • 10. Incompressibility and mass conservation
    • 11. Stress tensor - existence and symmetry
    • 12. Stress tensor in Newtonian fluids
    • 13. Navier–Stokes equation
    • 14. Thermodynamic considerations
    • 15. Energy equation
    • 16. Complete equations of motion
    • 17. Applications of Bernoulli's equation and control volumes
    • 18. Vorticity
    • 19. Applications to viscous flow
    • 20. Laminar boundary layers
    • 21. Some applications to convective heat and mass transfer.
      Author
    • Peter S. Bernard , University of Maryland, College Park

      Professor Peter Bernard has 35 years' experience in teaching graduate level fluid mechanics at the University of Maryland. He is a fellow of the American Physical Society and associate fellow of the American Institute of Aeronautics and Astronautics. In addition to his many research articles devoted to the physics and computation of turbulent flow, he is the coauthor of the highly regarded volume Turbulent Flow: Analysis, Measurement and Prediction that has been hailed as 'probably the best for classroom use or private study' (Journal of Fluid Mechanics).