Classical Covariant Fields
This 2002 book discusses the classical foundations of field theory, using the language of variational methods and covariance. It explores the limits of what can be achieved with purely classical notions, and shows how these have a deep and important connection with the second quantized field theory, which follows on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts and cataloging results which are hard to find in the literature. Care is taken to explain how results arise and how to interpret them physically, for graduate students starting out in the field. An ideal supplementary text for courses on elementary field theory, group theory and dynamical systems, it is also a valuable reference for researchers working in these and related areas. It has been reissued as an Open Access publication on Cambridge Core.
- Contains material not found in any other books
- A thorough and pedagogical treatment of the subject
- Places emphasis on physical understanding
- This title has been reissued as an Open Access publication on Cambridge Core
Reviews & endorsements
'In conclusion, I think that this book can be valuable for graduate students in physics, mainly interested in quantum field theories and particle physics, who will appreciate an exhaustive description of the classical foundations of such theories.' Zentralblatt MATH
Product details
No date availablePaperback
9781009289863
75 pages
244 × 169 × 29 mm
0.97kg
Table of Contents
- Foreword
- Part I. Fields:
- 1. Introduction
- 2. The electromagnetic field
- 3. Field parameters
- 4. The action principle
- 5. Classical field dynamics
- 6. Statistical interpretation of the field
- 7. Examples and applications
- Part II. Groups and Fields:
- 8. Field transformations
- 9. Spacetime transformations
- 10. Kinematical and dynamical transformations
- 11. Position and momentum
- 12. Charge and current
- 13. The non-relativistic limit
- 14. Unified kinematics and dynamics
- 15. Epilogue: quantum field theory
- Part III. Reference: A Compendium of Fields:
- 16. Gallery of definitions
- 17. The Schrödinger field
- 18. The real Klein Gordon field
- 19. The complex Klein Gordon field
- 20. The Dirac field
- 21. The Maxwell radiation field
- 22. The massive Proca field
- 23. Non-Abelian fields
- 24. Chern-Simons theories
- 25. Gravity as a field theory
- Part IV. Appendices.