Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Mach Wave and Acoustical Wave Structure in Nonequilibrium Gas-Particle Flows

Mach Wave and Acoustical Wave Structure in Nonequilibrium Gas-Particle Flows

Mach Wave and Acoustical Wave Structure in Nonequilibrium Gas-Particle Flows

Joseph T. C. Liu, Brown University, Rhode Island
February 2022
This ISBN is for an eBook version which is distributed on our behalf by a third party.
Adobe eBook Reader
9781108997799
$22.00
USD
Adobe eBook Reader
GBP
Paperback

    In this Element, the gas-particle flow problem is formulated with momentum and thermal slip that introduces two relaxation times. Starting from acoustical propagation in a medium in equilibrium, the relaxation-wave equation in airfoil coordinates is derived though a Galilean transformation for uniform flow. Steady planar small perturbation supersonic flow is studied in detail according to Whitham's higher-order waves. The signals owing to wall boundary conditions are damped along the frozen-Mach wave, and are both damped and diffusive along an effective-intermediate Mach wave and diffusive along the equilibrium Mach wave where the bulk of the disturbance propagates. The surface pressure coefficient is obtained exactly for small-disturbance theory, but it is considerably simplified for the small particle-to-gas mass loading approximation, equivalent to a simple-wave approximation. Other relaxation-wave problems are discussed. Martian dust-storm properties in terms of gas-particle flow parameters are estimated.

    Product details

    February 2022
    Adobe eBook Reader
    9781108997799
    0 pages
    This ISBN is for an eBook version which is distributed on our behalf by a third party.

    Table of Contents

    • 1. Introduction
    • 2. Conservation equations of gas-particle flows
    • 3. Small perturbation equations in a stationary frame
    • 4. Aerodynamic interpretation of acoustics in gas-particle flows
    • 5. Steady small-perturbation theory
    • 6. Some limiting cases
    • 7. Two-dimensional steady supersonic flow
    • 8. Approximate consideration based on a 'rarefied' particle cloud
    • 9. Particle collision with the wall and the normal force
    • 10. The wall-pressure coefficient
    • 11. Numerical examples
    • 12. Relation to other relaxation wave problems
    • 13. Concluding remarks. Appendix A. Appendix B. References.
      Author
    • Joseph T. C. Liu , Brown University, Rhode Island