Logic as Algebra
Here is an introduction to modern logic that differs from others by treating logic from an algebraic perspective. What this means is that notions and results from logic become much easier to understand when seen from a familiar standpoint of algebra. The presentation, written in the engaging and provocative style that is the hallmark of Paul Halmos, from whose course the book is taken, is aimed at a broad audience, students, teachers and amateurs in mathematics, philosophy, computer science, linguistics and engineering; they all have to get to grips with logic at some stage. All that is needed to understand the book is some basic acquaintance with algebra.
- Halmos is extremely well known
- Makes very easy reading
- Covers topics that other treatments shy away from
Product details
September 1998Paperback
9780883853276
148 pages
230 × 154 × 10 mm
0.213kg
This item is not supplied by Cambridge University Press in your region. Please contact Mathematical Association of America for availability.
Table of Contents
- 1. What is logic? 2. Propositional calculus
- 3. Boolean algebra
- 4. Boolean universal algebra
- 5. Logic via algebra
- 6. Lattices and infinite operations
- 7. Monadic predicate calculus.