Intersection and Decomposition Algorithms for Planar Arrangements
This book presents a study of various problems related to arrangements of lines, segments, or curves in the plane.
The first problem is a proof of almost tight bounds on the length of (n,s)-Davenport-Schinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed.
Product details
August 2011Paperback
9780521168472
296 pages
229 × 152 × 17 mm
0.44kg
Available
Table of Contents
- Introduction
- 1. Davenport–Schinzel sequences
- 2. Red-blue intersection detection algorithms
- 3. Partitioning arrangements of lines
- 4. Applications of the partitioning algorithm
- 5. Spanning trees with low stabbing number
- Bibliography
- Index of symbols
- Index of keywords.