Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Geometric Galois Actions

Geometric Galois Actions

Geometric Galois Actions

Volume 2: The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups
Leila Schneps, Universite de Paris
Pierre Lochak, Centre National de la Recherche Scientifique (CNRS), Paris
September 1997
2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups
Available
Paperback
9780521596411
$109.00
USD
Paperback
USD
eBook

    This book surveys progress in the domains described in the hitherto unpublished manuscript "Esquisse d'un Programme" (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest among workers in algebraic geometry, number theory, algebra and topology.

    • Unique publication of two manuscripts by Grothendieck
    • Opening of new domains in mathematics
    • Introductory clarifying texts

    Product details

    September 1997
    Paperback
    9780521596411
    360 pages
    228 × 153 × 21 mm
    0.485kg
    Available

    Table of Contents

    • List of participants
    • Abstracts of the talks
    • Part I. Introduction: Part II. Abstracts: Part III. Dessins d'enfants:
    • 1. Unicellular cartography and Galois orbits of plane trees N. Adrianov, G. Shabat
    • 2. Galois groups, monodromy groups and cartographical groups G. Jones, M. Streit
    • 3. Drawings, triangle groups and algebraic curves W. Harvey
    • 4. Permutation techniques for coset representations of modular subgroups T. Hsu
    • 5. On groups acting on dessin-labeled objects V. Shabat
    • 6. Dessins d'enfants en genre 1 L. Zapponi
    • Part IV. Inverse Galois Problem:
    • 7. The regular inverse Galois problem over large fields P. Debes, B. Deschamps
    • 8. The symplectic braid group and Galois realizations K. Strambach, H. Volklein
    • 9. Obstructed components of A5 modular towers M. Fried, Y. Kopeliovic
    • Part V. Galois Actions And Mapping Class Groups:
    • 10. Monodromy of iterated integrals (non-Abelian unipotent periods) Z. Wojtkowiak
    • 11. Deformation of singularities and mapping class groups M. Matsumoto
    • Part VI. Universal Teichmüller Theory:
    • 12. The universal Ptolemy group and its completions R. Penner
    • 13. Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée M. Imbert, V. Sergiescu
    • 14. The universal Ptolemy–Teichmuller groupoid P. Lochak, L. Schneps.
      Contributors
    • G. Jones, M. Streit, L. Zapponi, T.Hsu, P. Debes, B. Deschamps, M. Fried, H. Strambach, H. Volklein, Y. Ihara, H. Nakamura, M. Matsumoto, Z. Wojtkowiak, M. Imbert, V. Sergiescu, R. Penner, P. Lochak, L. Schneps

    • Editors
    • Leila Schneps , Universite de Paris
    • Pierre Lochak , Centre National de la Recherche Scientifique (CNRS), Paris