Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Coarse Grained Simulation and Turbulent Mixing

Coarse Grained Simulation and Turbulent Mixing

Coarse Grained Simulation and Turbulent Mixing

Fernando F. Grinstein, Los Alamos National Laboratory
August 2016
Available
Hardback
9781107137042
AUD$261.95
inc GST
Hardback
USD
eBook

    Small-scale turbulent flow dynamics is traditionally viewed as universal and as enslaved to that of larger scales. In coarse grained simulation (CGS), large energy-containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale (SGS) effects are modeled. Coarse Grained Simulation and Turbulent Mixing reviews our understanding of CGS. Beginning with an introduction to the fundamental theory the discussion then moves to the crucial challenges of predictability. Next, it addresses verification and validation, the primary means of assessing accuracy and reliability of numerical simulation. The final part reports on the progress made in addressing difficult non-equilibrium applications of timely current interest involving variable density turbulent mixing. The book will be of fundamental interest to graduate students, research scientists, and professionals involved in the design and analysis of complex turbulent flows.

    • A graduate-level introduction to the current state of knowledge in coarse grained simulation, with a particular focus on turbulent material mixing
    • Comprises thirteen papers contributed by leading experts in the field
    • Will appeal to young researchers from across the sciences who work with complex turbulent flows

    Product details

    July 2016
    Adobe eBook Reader
    9781316573068
    0 pages
    0kg
    230 b/w illus. 32 colour illus. 20 tables
    This ISBN is for an eBook version which is distributed on our behalf by a third party.

    Table of Contents

    • Preface Fernando F. Grinstein
    • Prologue Fernando F. Grinstein
    • Part I. Fundamentals:
    • 1. Proof of concept - enslaved turbulent mixing Fernando F. Grinstein and Adam J. Wachtor
    • 2. A minimum turbulence state for coarse grained simulation Ye Zhou
    • 3. Finite scale Navier–Stokes - compressible hydrodynamics at second order L. G. Margolin
    • 4. Material conservation of passive scalar mixing in finite scale Navier–Stokes fluid turbulence J. R. Ristorcelli
    • Part II. Challenges:
    • 5. Subgrid and supergrid modeling Fernando F. Grinstein
    • 6. Cloud modeling - an example of why small scale details matter for accurate prediction Jon Reisner
    • 7. Verification, validation and uncertainty quantification for coarse grained simulation William J. Rider, James R. Kamm and V. Gregory Weirs
    • Part III. Complex Mixing Consequences:
    • 8. Shock driven turbulence Fernando F. Grinstein, A. A. Gowardhan and J. R. Ristorcelli
    • 9. Laser driven turbulence in high energy density physics and inertial confinement fusion experiments Brian M. Haines, Fernando F. Grinstein, Leslie Welser-Sherrill and James R. Fincke
    • 10. Drive asymmetry, convergence, and turbulence in inertial confinement fusion implosions Vincent A. Thomas and Robert J. Kares
    • 11. Rayleigh–Taylor driven turbulence Nicholas A. Denissen, Jon Reisner, Malcolm Andrews and Bertrand Rollin
    • 12. Spray combustion in swirling flow Suresh Menon and Reetesh Ranjan
    • 13. Afterburning combustion behind explosive blasts E. Fedina, C. Fureby, K. C. Gottiparthi and Suresh Menon
    • Epilogue Fernando F. Grinstein.
      Contributors
    • Fernando F. Grinstein, Adam J. Wachtor, Ye Zhou, L. G. Margolin, J. R. Ristorcelli, Jon Reisner, William J. Rider, James R. Kamm, V. Gregory Weirs, A. A. Gowardhan, Brian M. Haines, Leslie Welser-Sherrill, James R. Fincke, Vincent A. Thomas, Robert J. Kares, Nicholas A. Denissen, Malcolm Andrews, Bertrand Rollin, Suresh Menon, Reetesh Ranjan, E. Fedina, C. Fureby, K. C. Gottiparthi

    • Editor
    • Fernando F. Grinstein , Los Alamos National Laboratory

      Fernando F. Grinstein is a Scientist at the X-Computational Physics Division of the Los Alamos National Laboratory. He is a world leader in issues of large eddy simulation (LES) of turbulent material mixing physics in complex multidisciplinary applications. He has led integration efforts of the pioneers of the ILES technique in workshops and special meetings worldwide, and in the first comprehensive description of the methodology, Implicit LES: Computing Turbulent Flow Dynamics, written with Len Margolin and William Rider.