Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


D-wave Superconductivity

D-wave Superconductivity

D-wave Superconductivity

Tao Xiang, Chinese Academy of Sciences, Beijing
Congjun Wu, Westlake University, Hangzhou
June 2022
Hardback
9781009218597
$79.99
USD
Hardback

    This volume provides a comprehensive introduction to the theory of d-wave superconductivity, focused on d-wave pairing symmetry and its physical consequences in the superconducting state. It discusses the basic concepts and methodologies related to high-temperature superconductivity and compares experimental phenomena with theoretical predictions. After a brief introduction to the basic theory of superconductivity and several models for high-temperature superconductivity, this book presents detailed derivations and explanations for various single-particle and collective properties of d-wave superconductors that can be monitored experimentally, including thermodynamics, angular-resolved photo-emission, single-particle and Josephson tunnelling, impurity scattering, magnetic and superfluid responses, transport and optical properties and mixed states. Various universal behaviours of d-wave superconductors are highlighted. Aimed primarily at graduate students and research scientists in condensed matter and materials physics, this text enables readers to understand systematically the physical properties of high-temperature superconductors.

    • Serves as a useful reference for advanced courses on superconductivity
    • Enables readers to understand experimental results and the physical properties of high-Tc superconductors
    • Provides a self-contained introduction to the topic and detailed derivations that make the text accessible to graduate students with minimal training in condensed matter theory

    Product details

    June 2022
    Hardback
    9781009218597
    360 pages
    250 × 175 × 27 mm
    0.85kg
    Not yet published - available from February 2025

    Table of Contents

    • 1. Introduction to superconductivity
    • 2. Microscopic models for high temperature superconductors
    • 3. Basic properties of d-wave superconductors
    • 4. Quasiparticle excitation spectra
    • 5. Tunneling effect
    • 6. Josephson effect
    • 7. Single impurity scattering
    • 8. Many-impurity scattering
    • 9. Superfluid response
    • 10. Optical and thermal conductivities
    • 11. Raman spectroscopy
    • 12. Nuclear magnetic resonance
    • 13. Neutron scattering spectroscopy
    • 14. Mixed state
    • Appendices
    • Bibliography
    • Index.
      Authors
    • Tao Xiang , Chinese Academy of Sciences, Beijing

      Tao Xiang is a Professor at the Institute of Physics, Chinese Academy of Sciences (CAS), working on Condensed Matter Physics. He is an elected CAS member and a fellow of the World Academy of Sciences. He received the He-Leung-He-Lee Prize for Scientific and Technological Progress and several other awards.

    • Congjun Wu , Westlake University, Hangzhou

      Congjun Wu is a Professor at Westlake University, working on exploring new states of matter in condensed matter and cold atom systems, including superconductivity, magnetism, orbital physics, topological states, and quantum Monte-Carlo simulations. He was elected to be a fellow of American Physical Society in 2018, and awarded Sloan Research Fellowship in 2008.