Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Hilbert's Tenth Problem

Hilbert's Tenth Problem

Hilbert's Tenth Problem

Diophantine Classes and Extensions to Global Fields
Alexandra Shlapentokh, East Carolina University
November 2006
Available
Hardback
9780521833608
$151.00
USD
Hardback
USD
eBook

    In the late sixties Matiyasevich, building on the work of Davis, Putnam and Robinson, showed that there was no algorithm to determine whether a polynomial equation in several variables and with integer coefficients has integer solutions. Hilbert gave finding such an algorithm as problem number ten on a list he presented at an international congress of mathematicians in 1900. Thus the problem, which has become known as Hilbert's Tenth Problem, was shown to be unsolvable. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields including, in the function field case, the fields themselves. While written from the point of view of Algebraic Number Theory, the book includes chapters on Mazur's conjectures on topology of rational points and Poonen's elliptic curve method for constructing a Diophatine model of rational integers over a 'very large' subring of the field of rational numbers.

    • Looks at the subject from the point of view of Algebraic Number Theory
    • Also includes information on Mazur's Conjectures and Poonen's elliptic curve method
    • Suitable for graduate students

    Reviews & endorsements

    "Shlapentokh offers the first synthesis of the new wave of work, including exciting recent results of B.Poonen that come as close as anyone can yet to extending Matiyesevich's theorem in the desired way."
    D.V. Feldman, University of New Hampshire for CHOICE

    "It gives a very comprehensive survey of what is known so far about undecidability and Diophantine definability for these rings..."
    Jeroen Demeyer, Mathematical Reviews

    See more reviews

    Product details

    November 2006
    Hardback
    9780521833608
    330 pages
    233 × 158 × 23 mm
    0.588kg
    18 b/w illus.
    Available

    Table of Contents

    • 1. Introduction
    • 2. Diophantine classes: definition and basic facts
    • 3. Diophantine equivalence and diophantine decidability
    • 4. Integrality at finitely many primes and divisibility of order at infinitely many primes
    • 5. Bound equations for number fields and their consequences
    • 6. Units of rings of W-integers of norm 1
    • 7. Diophantine classes over number fields
    • 8. Diophantine undecidability of function fields
    • 9. Bounds for function fields
    • 10. Diophantine classes over function fields
    • 11. Mazur's conjectures and their consequences
    • 12. Results of Poonen
    • 13. Beyond global fields
    • A. Recursion theory
    • B. Number theory
    • Bibliography
    • Index.
      Author
    • Alexandra Shlapentokh , East Carolina University

      Alexandra Shlapentokh is Professor of Mathematics at East Carolina University.