Tame Topology and O-minimal Structures
Following their introduction in the early 1980s o-minimal structures were found to provide an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. These notes give a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. The book starts with an introduction and overview of the subject. Later chapters cover the monotonicity theorem, cell decomposition, and the Euler characteristic in the o-minimal setting and show how these notions are easier to handle than in ordinary topology. The remarkable combinatorial property of o-minimal structures, the Vapnik-Chervonenkis property, is also covered. This book should be of interest to model theorists, analytic geometers and topologists.
- First book on this subject
- Author is world authority
- Should be accessible to non-experts
Product details
May 1998Paperback
9780521598385
192 pages
228 × 152 × 12 mm
0.275kg
Available
Table of Contents
- 1. Some elementary results
- 2. Semialgebraic sets
- 3. Cell decomposition
- 4. Definable invariants: Dimension and Euler characteristic
- 5. The Vapnik–Chernovenkis property in o-minimal structures
- 6. Point-set topology in o-minimal structures
- 7. Smoothness
- 8. Triangulation
- 9. Trivialization
- 10. Definable spaces and quotients.