Variational Problems in Differential Geometry
The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.
- Provides access to cutting-edge research from an international group of leading authors on the subject
- Promotes an understanding of the way subareas of the field are related through its mix of contributions from researchers across the spectrum of variational problems
- Serves both as an excellent reference for experienced researchers and as an introduction to the subject for graduate students, due to its mix of original and expository papers
Product details
November 2011Adobe eBook Reader
9781139153959
0 pages
0kg
5 b/w illus.
This ISBN is for an eBook version which is distributed on our behalf by a third party.
Table of Contents
- 1. Preface
- 2. The supremum of first eigenvalues of conformally covariant operators in a conformal class Bernd Ammann and Pierre Jammes
- 3. K-Destabilizing test configurations with smooth central fiber Claudio Arezzo, Alberto Della Vedova and Gabriele La Nave
- 4. Explicit constructions of Ricci solitons Paul Baird
- 5. Open iwasawa cells and applications to surface theory Josef F. Dorfmeister
- 6. Multiplier ideal sheaves and geometric problems Akito Futaki and Yuji Sano
- 7. Multisymplectic formalism and the covariant phase space Frédéric Hélein
- 8. Nonnegative curvature on disk bundles Lorenz J. Schwachhöfer
- 9. Morse theory and stable pairs Richard A. Wentworth and Graeme Wilkin
- 10. Manifolds with k-positive Ricci curvature Jon Wolfson.