Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Polynomials and the mod 2 Steenrod Algebra

Polynomials and the mod 2 Steenrod Algebra

Polynomials and the mod 2 Steenrod Algebra

Volume 1: The Peterson Hit Problem
Grant Walker, University of Manchester
Reginald M. W. Wood, University of Manchester
November 2017
1. The Peterson Hit Problem
Paperback
9781108414487
£80.99
GBP
Paperback
USD
eBook

    This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.

    • Algebraic and combinatorial treatment accessible to those without a background in topology
    • Largely self-contained with detailed proofs
    • Volume 1 is suitable for use as a graduate-level text

    Product details

    November 2017
    Paperback
    9781108414487
    370 pages
    227 × 151 × 22 mm
    0.56kg
    Available

    Table of Contents

    • Preface
    • 1. Steenrod squares and the hit problem
    • 2. Conjugate Steenrod squares
    • 3. The Steenrod algebra A2
    • 4. Products and conjugation in A2
    • 5. Combinatorial structures
    • 6. The cohit module Q(n)
    • 7. Bounds for dim Qd(n)
    • 8. Special blocks and a basis for Q(3)
    • 9. The dual of the hit problem
    • 10. K(3) and Q(3) as F2GL(3)-modules
    • 11. The dual of the Steenrod algebra
    • 12. Further structure of A2
    • 13. Stripping and nilpotence in A2
    • 14. The 2-dominance theorem
    • 15. Invariants and the hit problem
    • Bibliography
    • Index of Notation for Volume 1
    • Index for Volume 1
    • Index of Notation for Volume 2
    • Index for Volume 2.
      Authors
    • Grant Walker , University of Manchester

      Grant Walker was a senior lecturer in the School of Mathematics at the University of Manchester before his retirement in 2005.

    • Reginald M. W. Wood , University of Manchester

      Reginald M. W. Wood was a Professor in the School of Mathematics at the University of Manchester before his retirement in 2005.