Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Recent Progress in the Theory of the Euler and Navier–Stokes Equations

Recent Progress in the Theory of the Euler and Navier–Stokes Equations

Recent Progress in the Theory of the Euler and Navier–Stokes Equations

James C. Robinson, University of Warwick
José L. Rodrigo, University of Warwick
Witold Sadowski, Uniwersytet Warszawski, Poland
Alejandro Vidal-López, Xian Jiaotong University, China
January 2016
Paperback
9781107554979
£57.99
GBP
Paperback
USD
eBook

    The rigorous mathematical theory of the Navier–Stokes and Euler equations has been a focus of intense activity in recent years. This volume, the product of a workshop in Venice in 2013, consolidates, surveys and further advances the study of these canonical equations. It consists of a number of reviews and a selection of more traditional research articles on topics that include classical solutions to the 2D Euler equation, modal dependency for the 3D Navier–Stokes equation, zero viscosity Boussinesq equations, global regularity and finite-time singularities, well-posedness for the diffusive Burgers equations, and probabilistic aspects of the Navier–Stokes equation. The result is an accessible summary of a wide range of active research topics written by leaders in their field, together with some exciting new results. The book serves both as a helpful overview for graduate students new to the area and as a useful resource for more established researchers.

    • A broad overview which makes an ideal introduction for students entering the field
    • Provides up-to-date surveys of active topics
    • Includes exciting new research papers from experts in the field

    Product details

    January 2016
    Paperback
    9781107554979
    248 pages
    229 × 152 × 14 mm
    0.36kg
    10 b/w illus.
    Available

    Table of Contents

    • Preface James C. Robinson, José L. Rodrigo, Witold Sadowski and Alejandro Vidal-López
    • 1. Classical solutions to the two-dimensional Euler equations and elliptic boundary value problems, an overview Hugo Beirão da Veiga
    • 2. Analyticity radii and the Navier–Stokes equations - recent results and applications Zachary Bradshaw, Zoran Grujić and Igor Kukavica
    • 3. On the motion of a pendulum with a cavity entirely filled with a viscous liquid Giovanni P. Galdi and Giusy Mazzone
    • 4. Modal dependency and nonlinear depletion in the three-dimensional Navier–Stokes equations John D. Gibbon
    • 5. Boussinesq equations with zero viscosity or zero diffusivity - a review Weiwei Hu, Igor Kukavica, Fei Wang and Mohammed Ziane
    • 6. Global regularity versus finite-time singularities - some paradigms on the effect of boundary conditions and certain perturbations Adam Larios and Edriss S. Titi
    • 7. Parabolic Morrey spaces and mild solutions of the Navier–Stokes equations - an interesting answer through a silly method to a stupid question Pierre Gilles Lemarié-Rieusset
    • 8. Well-posedness for the diffusive 3D Burgers equations with initial data in H1/2 Benjamin C. Pooley and James C. Robinson
    • 9. On the Fursikov approach to the moment problem for the three-dimensional Navier–Stokes equations James C. Robinson and Alejandro Vidal-López
    • 10. Some probabilistic topics in the Navier–Stokes equations Marco Romito.
      Contributors
    • James C. Robinson, José L. Rodrigo, Witold Sadowski, Alejandro Vidal-López, Hugo Beirão da Veiga, Zachary Bradshaw, Zoran Grujić, Igor Kukavica, Giovanni P. Galdi, Giusy Mazzone, John D. Gibbon, Weiwei Hu, Fei Wang, Mohammed Ziane, Adam Larios, Edriss S. Titi, Pierre Gilles Lemarié-Rieusset, Benjamin C. Pooley, Marco Romito